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Introduction
Goal:

 To reduce the uncertainties of luminous flux and luminous efficacy measurement of solid-state lighting (SSL) 
products at National Metrology Institutes (NMIs) to 0.5 % (k = 2) and to demonstrate that uncertainties as low 
as 1 % (k = 2) can be achieved in a test laboratory. 
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Source design and characterization
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 Source requirements:

• Mains operated luminous flux transfer lamp with constant power consumption, 
optical stability better than 0.1 % and a high power factor.

• Low total harmonic distortion to enable consistent operation and measurement with different 
types of AC voltage sources and power meters.

• LEDs selected with spectra close to the LED-B3 reference spectrum.
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 Source design:

• LED PCB on heat sink with built-in constant-power controlled AC-DC converter combined with 
constant-current linear regulator.
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 Seasoning and stability:

• Lamps are seasoned for 800 hours while monitoring flux every 100 hours.

 Optical characterization:

• Angular resolved Spectral Power Distribution (SPD) and integrated SPD have been measured 
for the six lamps.

• Luminous intensity distribution has been measured at six c-planes.

 Electronic characterization:

• Short term stability of the lamp has been assessed.

• Constant power consumption within 0.1 % after 2 minutes of stabilization time.

• Impact of power analyser bandwidth has been measured with the higher corner frequencies 
of the power-analyser set to 1 kHz, 2 kHz, 5 kHz, 15 kHz, 30 kHz, 
45 kHz, 65 kHz, 75 kHz, 100 kHz, and 300 kHz.

• Impact of Impedance Stabilization Network (ISN) on power measurements has been determined 
at various higher corner frequencies of power-analyser.

Source design and characterization
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Result: Seasoning
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 Seasoning and stability:

• Lamps are seasoned for 800 hours while monitoring flux every 100 hours.

• Short term stability of the lamp has been assessed.

 Optical characterization:
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Result: Spectral power distribution
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Result: CCT, x and y measured along a c-plane of lamp P3.1-002
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Result: Luminous intensity distributions of lamp P3.1-002
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Result: Variation of luminous intensity distribution
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 Seasoning and stability:

• Lamps are seasoned for 800 hours while monitoring flux every 100 hours.

• Short term stability of the lamp has been assessed.

 Optical characterization:

• Angular resolved Spectral Power Distribution (SPD) and integrated SPD have been measured 
for the six lamps.

• Luminous intensity distribution has been measured at six c-planes.

 Electronic characterization:

• Constant power consumption within 0.1 % after 2 minutes of stabilization time.

• Impact of power analyser bandwidth has been measured with the higher corner frequencies 
of the power-analyser set to 1 kHz, 2 kHz, 5 kHz, 15 kHz, 30 kHz, 
45 kHz, 65 kHz, 75 kHz, 100 kHz, and 300 kHz.

• Impact of Impedance Stabilization Network (ISN) on power measurements has been determined 
at various higher corner frequencies of power-analyser.
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Result: Stability of lamp P3.1-001
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Result: Electronic characterization of lamp 
P3.1-001 without ISN
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Result: Electronic characterization of lamp 
P3.1-001 with ISN
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Result: Typical electronic performance
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Voltage 230.0 V apparent power (20.57 ± 0.03) VA

Frequency 50.0 Hz active power (19.97 ± 0.20) W

Current (89.44 ± 0.21) mA power factor 0.971 ± 0.016
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Conclusion

Performance after ageing:
• Input power variation can be restricted to 0.1 %.
• Short term luminous flux stability better than 0.1 %.
• Long term luminous flux stability measured during seasoning 

better than 0.2 %.
• Power factors higher than 0.97.
• THD of current lower than 4 %.
• When powered through an ISN the relative difference in power 

consumption 
measured at bandwidths from 1 kHz to 300 kHz is within 0.017 %.

Their performance shows that these lamps are highly suitable for 
realization, transfer and verification of the luminous flux and 
luminous efficacy scale.
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Thank you
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